NON INVASIVE VENTILATION

DR.ASHISH MEHTA. Fellow in Neonatal Medicine College of Pediatrics, Australia.

CONSULTANT NEONATOLOGIST ARPAN NEWBORN CARE CENTRE Pvt Ltd. AHMEDABAD

Mammalian Birth is Similar to Amphibian Metamorphosis

- Transition from an aquatic existence to an obligate air breathing state
- Profound functional and structural adjustments in all organ systems
- Top of Mount
 Everest to sea level
 in a second

Functional Residual Capacity

0 breaths (fetus) 3 breaths 5 breaths b

Hooper SB et al, NeoReviews, 2010

Oxygen saturation in healthy term infants

Mariani G et al, J of Peds, 2007

Respiratory support for preterm babies Aim: open the lung and keep it open!

Traditional Classification of Non Invasive Ventilation

Lung volume, lung weight, and protein and DNA contents at end of study were higher in CPAP-exposed than in control animals (all P < 0.01). Strain-induced growth of the immature lung. Zhang S. et al. J. Appl Physiol 1996;81:1471-6

Does CPAP work in RDS ?

Study	CDP n/N	Control n/N	RR (fixed) 95% Cl	RR (fixed) 95% Cl
)urbin 1976 (46) anaroff 1973 (43)	1/12 4/15	2/12	<u> </u>	0.50 [0.05, 4.81]
amuels 1996 (44)	1/26	0/26		> 3.00 (0.13, 70.42)
Jelenky 1976 (45)	4/22	14/29		0.38 [0.14, 0.99]
Rhodes 1973 (8)	6/22	10/19		0.52 [0.23, 1.16]
ooled analysis (95%	5 CI)	117 W. W. W. Mary 1874	.	0.52 [0.32, 0.87]
lest for heterogeneit	y: Chi ² = 1.	73, df = 4 (P = 0.7	78), l ² = 0%	
est for overall effect	: Z = Z.51 (P = 0.01)		
		0	10205125	10
		0.	10.2 0.5 1 2 5	10

✓ Decreased need for assisted ventilation
 ✓ Reduces the duration of MV
 ✓ Significant reduction in mortality

Continuous distending pressure:

- Maintains upper airway patency
- Distends lower airways
- Maintains functional residual capacity (FRC)
- Preserves surfactant
- Increases pulmonary compliance
- Improves gas exchange
- Regulates breathing pattern

Morley CJ. ADC 2003

Success Rate with CPAP

Gest- ational Age (wks	s)	CPAP success rate (no mech vent until 3-7d)	Ν	Study	Ref
23-25		31%	87	Columbia Univ.	Ammari et al., J. Pediatr 147:341:2005
26-28		78%	106	Columbia Univ.	Ammari et al., J. Pediatr 147:341:2005
29-31		93%	54	Columbia Univ.	Ammari et al., J. Pediatr 147:341:2005
25-28		54%	307	COIN trial	Morely et al N Engl J Med 2008;358:700-8.
24-28		55%	663	SUPPORT trial	Finer et al N Engl J Med 2010;362:1970-9.
25-28		66%	103	CURPAP study	Sandri et al Pediatrics 2010;125:e1402-e1409
27-31		61%	138	RCT of Insure technique (Colombia)	Rojas et al <i>Pediatrics</i> 2009;123:137–142

CPAP and Surfactant

- Less need of MV
- Lesser duration of MV
- Decreased oxygen days
- Reduce CPAP failure rate
- Less airleak
- Lesser incidence of CLD

DR CPAP vs Early Surfactant

Study N

Design

Comments

COIN (NEJM 2008)	610	25-28 weeks, randomized at 5 minutes, CPAP 8, FiO2>60%	No difference in death or BPD, CPAP arm had more PTX and fewer days on MV. Subgroup analysis at 8 weeks showed CPAP arm had improved lung mechanics and decreased WOB
SUPPORT (NEJM 2010)	1316	24-27 weeks, randomized at birth, CPAP 5, FiO2>50%	No difference in death or BPD, CPAP arm required less intubation, fewer days on MV and less postnatal steroids. Decreased death in the CPAP arm among infants 24-25 weeks
CURPAP (Pediatrics 2010)	208	25-28 weeks, PSX vs Early CPAP CPAP 6, FiO2>40%	No difference in death or morbidities, conclude that >50% will only need CPAP
VON (Pediatrics 2011)	648	26-29 weeks, PS vs IS vs nCPAP, CPAP 5, FiO2 40-60%	No difference in mortality or BPD amongst the 3 groups. nCPAP arm had ~50% reduction in intubation rates and need for surfactant

Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis

© 06 OPEN ACCESS

Georg M Schmölzer consultant¹²³, Manoj Kumar consultant¹², Gerhard Pichler consultant¹²³, Khalid Aziz professor¹², Megan O'Reilly postdoctoral fellow¹², Po-Yin Cheung professor¹²

Conclusions /ar ota

- Nasal CPAP initiated in the delivery room compared with intubation reduces death or bronchopulmonary dysplasia in very
- Bii Ge preterm babies. One additional infant could survive to 36 weeks
- ntu without bronchopulmonary dysplasia for every 25 babies treated
- Nc Bii with nasal CPAP in the delivery room rather than being
- intubated and mechanically ventilated. īm

Avetification	(we also)
stratification	(weeks)

2507-2667 and 277-2867

2407-2567 and 2607-2767

2507-2667 and 2707-2867

260/7-276/7 and 280/7-296/7

AAP recommendation...

 Using CPAP immediately after birth with subsequent selective surfactant administration may be considered as an alternative to routine intubation with prophylactic or early surfactant administration in preterm infants.

RA Polin, WA Carlo, AAP Pediatrics 2014

Level of evidence 1 : strong recommendation

AAP recommendation...

 IF respiratory support with a ventilator will be needed....

 Early administration of surfactant followed by

Rapid extubation is preferable to prolonged ventilation...

RA Polin, WA Carlo, AAP Pediatrics 2014

Level of evidence 1 : strong recommendation

Doing CPAP well isn't all that easy!

Prospective study with decubitus score staging Swiss NICU with wide experience in CPAP use

CPAP-related Nasal Trauma Nasal occurs in > 40% of VLBWI Neonates

Fischer C et al. Arch Dis Child F&N Ed. 2010;95:F447-451

CPAP

HHHFNC

Fundamental difference HHHFNC and CPAP – presence of leak !

HFNC: Leak between cannula and nares is mandatory! 50-70%

Effective CPAP requires a good seal/minimal leak for pressure transmission!

Result: pressure increases with increasing flow (p<0.003)

Wilkinson D et al. J Perinatol 2008; 28: 47-49

Wilkinson D et al. J Perinatol 2008; 28: 47-49

Conclusion:

WOB and pharyngeal pressures comparable between nCPAP and HHHFNC.

Heated, Humidified High-Flow Nasal Cannula Versus Nasal CPAP for Respiratory Support in Neonates Bradley A. Yoder, Ronald A. Stoddard, Ma Li, Jerald King, Daniel R. Dirnberger and Soraya Abbasi Pediatrics 2013;131;e1482; originally published online April 22, 2013;

The Journal of Pediatrics • www.jpeds.com

ORIGINAL ARTICLES

A Randomized Controlled Trial to Compare Heated Humidified High-Flow Nasal Cannulae with Nasal Continuous Positive Airway Pressure Postextubation in Premature Infants

Clare L. Collins, MBChB, FRACP¹, James R. Holberton, MBBS, FRACP¹, Charles Barfield, MBBS, FRACP¹, and Peter G. Davis, MD, FRACP²

High-Flow Nasal Cannulae in Very Preterm Infants after Extubation

Brett J. Manley, M.B., B.S., Louise S. Owen, M.D., Lex W. Doyle, M.D.,

N ENGLJ MED 369;15 NEJM.ORG OCTOBER 10, 2013

Pediatr Pulmonol. 2015; 50:576–583.

Safety and Efficacy of High-Flow Nasal Cannula Therapy in Preterm Infants: A Meta-analysis

Sarah J. Kotecha, Roshan Adappa, Nakul Gupta, W. John Watkins, Sailesh Kotecha and Mallinath Chakraborty *Pediatrics*; originally published online August 17, 2015;

1112 neonates

 HHHFNC compared with other modes of NIV when used as primary mode or post extubation

	TREFF	B aala	360	,		OB		e co
Study or Subgroup	Events	Total	Events	Total	Weight, %	MH, Fixed, 95% CI	M-H, Fixe	d, 95% Cl
Kugelman et al 2015**	12	38	13	38	44,0	0,89 (0.34 to 2.31)		
Lovizzari et al 2013**	-5	40	3	52	11,3	2,33 (0,52 to 10,41)	2	
Nair and Kama 2005 ^{kl}	2	13	2	15	7.8	1,18 (0.14 to 9.83)		
Yoder et al 2013*	6	58	9	67	37.0	0.74 (0.25 to 2.23)		<u>a</u> s
Total (95% CI)		149		172	100,0	1,02 (0,55 to 1.88)		
Total quents	25		27					

CONCLUSIONS: High-flow therapy appears to be similar in efficacy and safety to other conventional modes of NIV in preterm infants. It is associated with significantly lower odds of nasal trauma. Caution needs to be exercised in extreme preterm infants because of the paucity of published data.

Consensus of evidence

- High flow equivalent to neonatal CPAP in terms of safety and efficacy
- Less nasal trauma
- No clinically significant adverse event
- More acceptable to patient and family
- Simplifies care for the care giver

Not all infants can be supported with Nasal CPAP/HFNC alone

50-60% of infants fail CPAP as initial form of support *(Morley, 2008 and SUPPORT TRIAL, 2010)*

25-38% of infants fail nCPAP following InSurE *(Stefanescu, 2003)*

Respiratory Failure: pH<7.20, PaO₂>50 on FiO₂>0.5, and PaCO₂>65; or intractable apnea requiring frequent stimulation or manual resuscitation, <u>and high WOB</u>

NIPPV as Primary mode

Author/Ref	Туре	No. of Infants	NIPPV Group ^a	Control Group ^a	Outcomes
Primary mode:					
Manzar et al ⁴⁸	Prospective, Obs	16	Details not available.	N/A.	81% (n = 13) avoided intubation
Kugelman et al ³⁸	RCT	84	NIPPV: Rate: 12-30; PIP: 14-22;	NCPAP: 6–7; Fio2 adjusted for	NIPPV group had decreased BPD
Less failed Decreased	extuba clinica	ations and	s , Shorter dura physiological E	ition of respirat BPD	ory support
					support
Sai Sunil Kishore et al ³⁹	RCT	76	NIPPV: Rate: 50; PIP: 15–16; PEEP: 5; Ti: 0.3–0.35 s; Flow: 6–7 L/min; Fio ₂ adjusted for Spo ₂ : 88%–93%	NCPAP: 5; Flow: 6–7 L/min; Fio ₂ adjusted for Spo ₂ : 88%–93%	Less failed extubation with NIPPV at 48 h and 7 d
Meneses et al ⁴⁰	RCT	200	NIPPV: Rate: 20–30; PIP: 15–20; PEEP: 4–6; Ti: 0.4–0.35 s; Flow: 8–10 L/min; Fio ₂ adjusted for Spo ₂ : 88%–92%	NCPAP: 5–6; Flow: 8–10 L/min; Fio ₂ adjusted for Spo ₂ : 88%–92%	Less failed extubation with NIPPV at 24–72 h
Ramanathan et al ³⁵	RCT	110	NIPPV: Rate: 30–40; PIP: 10–15; PEEP: 5; Ti: 0.5 s; Flow: 8–10 L/ min; Fio ₂ adjusted for Spo ₂ : 84%–92%	NCPAP: 5–8; Fio ₂ adjusted for Spo ₂ : 84%–92%	Less failed extubation with NIPPV and decreased clinical and physiologic BPD

(S) NIPPV as secondary mode

Secondary mode:					
Friedlich et al ⁴	RCT	41	SNIPPV ^b : Rate: 10; PIP: same as pre-extubation; PEEP: 4–6; Ti: 0.6 s; Fio ₂ adjusted for Spo ₂ : 92%–95%	NP-CPAP: clinician discretion; Fio ₂ adjusted for Spo ₂ : 92%-95%	Less failed extubation with SNIPPV at 48 h
Barrington et al ⁵	RCT	54	SNIPPV: Rate: 12; PIP: 16 (to deliver at least 12); PEEP: 6;	NCPAP: 6	Less failed extubation with SNIPPV at 72 h
Khalaf et al ⁶	RCT	64	SNIPPV: Rate: same as before extubation; PIP:	NCPAP: 4–6; Flow: 8–10 L/ min; Fio2 adjusted for	Less failed extubation with SNIPPV at 72 h and 7 d

Less failed extubations , Shorter duration of respiratory support Decreased BPD/death, NDI and NDI/Death

			before extubation; PIP: increased by 2–4 over pre-extubation values; PEEP: \leq 5; Flow: 8–10 L/ min; Fio ₂ adjusted for Spo ₂ : 90%–96%	min; Fio2 adjusted for Spo2: 90%–96%	duration of supplemental oxygen, and decreased BPD
Moretti et al ³²	RCT	63	SNIPPV: Rate: same as before extubation; PIP: 10–20; PEEP: 3–5; Flow: 6– 10 L/min; Fio2 adjusted for Spo2: 90%–94%	NCPAP: 3–5; Flow: 6–10 L/ min; Fio2 adjusted for Spo2: 90%–94%	Less failed extubation with SNIPPV at 72 h
Gao et al ⁴⁵	RCT	50	SNIPPV: Rate: 40; PIP: 20; PEEP: 5; Fio2 adjusted for Spo2: 88%-92%	NCPAP: 4–8; Flow: 8–10 L/ min; Fio2 adjusted for Spo2: 88%–92%	Less failed extubation with SNIPPV
Bhandari et al ⁴⁶	Retrospective	469	SNIPPV: Rate: same as before extubation; PIP: increased by 2–4 over pre-extubation values; PEEP: ≤6; Flow: 8–10 L/ min; Fio ₂ adjusted for Spo ₂ : 85%–96%	NCPAP: 4–6; Flow: 8–10 L/ min; Fio2 adjusted for Spo2: 85%–96%	SNIPPV group (BW 500–750 g) had decreased BPD, BPD/death, NDI and NDI/ death

Table 2. Primary Outcome.*						
Outcome	Nasal IPPV no./toto	Nasal CPAP	Odds Ratio	Odds Ratio Adjusted for Strata (95% Cl)	P Value	Odds Ratio Adjusted for Strata and Baseline Covariates (95% CI)†
Primary outcome: death at <36 wk of post- menstrual age or BPD	, 191/497 (38.4)	180/490 (36.7)	1.07	1.09 (0.83–1.43)‡	0.56	1.05 (0.80–1.39)
Components of primary outcome						
Death at <36 wk of postmenstrual age	34/504 (6.7)	41/503 (8.2)	0.82	0.81 (0.51–1.31)∬	0.39	0.77 (0.48–1.24)
Survival with BPD	157/463 (33.9)	139/449 (31.0)	1.14	1.17 (0.86–1.57)‡	0.32	1.14 (0.84–1.54)
Death at <36 wk of postmenstrual age or BPD according to older NIH criteria in 20 infants	197/504 (39.1)	193/503 (38.4)	1.03	1.03 (0.79–1.35)‡	0.82	1.00 (0.76–1.31)
Subgroup analyses						
Prior intubation						
No	72/241 (29.9)	72/252 (28.6)	1.07	1.08 (0.72–1.62)¶	0.70	1.05 (0.70–1.57)
Yes	119/256 (46.5)	108/238 (45.4)	1.05	1.04 (0.73–1.50)¶	0.81 Interaction 0.85	1.02 (0.70–1.46)
Birth weight						
<750 g	93/161 (57.8)	79/158 (50.0)	1.37	1.35 (0.87–2.10)	0.18	1.30 (0.83–2.04)
750–999 g	98/336 (29.2)	101/332 (30.4)	0.94	0.92 (0.66–1.29)	0.64 Interaction 0.15	0.90 (0.64–1.26)

ET tube induced complications

- Traumatic and painful
- Hemodynamic instability
- Infection- Sepsis
- Airway emergencies
- A Resistance/WOB
 A
- Incidence of air-leak
- Permanent airway
 lesions

	CPAP	MV	
Breathing			
Support			
Hyperventilation			
Need for ABG			
Sedation			
Paralysing drug			
Risk of VILI			
Risk for sepsis			
Parent support			
Expertise			
Cost			

